164 research outputs found

    Microspinning: Local Surface Mixing via Rotation of Magnetic Microparticles for Efficient Small-Volume Bioassays

    Get PDF
    The need for high-throughput screening has led to the miniaturization of the reaction volume of the chamber in bioassays. As the reactor gets smaller, surface tension dominates the gravitational or inertial force, and mixing efficiency decreases in small-scale reactions. Because passive mixing by simple diffusion in tens of microliter-scale volumes takes a long time, active mixing is needed. Here, we report an efficient micromixing method using magnetically rotating microparticles with patterned magnetization induced by magnetic nanoparticle chains. Because the microparticles have magnetization patterning due to fabrication with magnetic nanoparticle chains, the microparticles can rotate along the external rotating magnetic field, causing micromixing. We validated the reaction efficiency by comparing this micromixing method with other mixing methods such as simple diffusion and the use of a rocking shaker at various working volumes. This method has the potential to be widely utilized in suspension assay technology as an efficient mixing strategy

    A Multimodal Deep Learning-Based Fault Detection Model for a Plastic Injection Molding Process

    Get PDF
    The authors of this work propose a deep learning-based fault detection model that can be implemented in the field of plastic injection molding. Compared to conventional approaches to fault detection in this domain, recent deep learning approaches prove useful for on-site problems involving complex underlying dynamics with a large number of variables. In addition, the advent of advanced sensors that generate data types in multiple modalities prompts the need for multimodal learning with deep neural networks to detect faults. This process is able to facilitate information from various modalities in an end-to-end learning fashion. The proposed deep learning-based approach opts for an early fusion scheme, in which the low-level feature representations of modalities are combined. A case study involving real-world data, obtained from a car parts company and related to a car window side molding process, validates that the proposed model outperforms late fusion methods and conventional models in solving the problem

    SNP@Domain: a web resource of single nucleotide polymorphisms (SNPs) within protein domain structures and sequences.

    Get PDF
    The single nucleotide polymorphisms (SNPs) in conserved protein regions have been thought to be strong candidates that alter protein functions. Thus, we have developed SNP@Domain, a web resource, to identify SNPs within human protein domains. We annotated SNPs from dbSNP with protein structure-based as well as sequence-based domains: (i) structure-based using SCOP and (ii) sequence-based using Pfam to avoid conflicts from two domain assignment methodologies. Users can investigate SNPs within protein domains with 2D and 3D maps. We expect this visual annotation of SNPs within protein domains will help scientists select and interpret SNPs associated with diseases. A web interface for the SNP@Domain is freely available at http://snpnavigator.net/ and from http://bioportal.net/.This project was supported by the Korean Ministry of Science and Technology (MOST) under grant number M10508040002-05N0804-00210 and M10407010001-05N0701-00100. Y.B.C. is supported by Biogreen21 program (20050401-034-791-006-03-00 and 20050301-034-481-006-02-00). Funding to pay the Open Access publication charges for this article was provided by M10407010001-05N0701-00100 grant of MOST

    A Case of Placenta Increta Presenting as Delayed Postabortal Intraperitoneal Bleeding in the First Trimester

    Get PDF
    Placenta increta is an uncommon and life-threatening complication of pregnancy characterized by complete or partial absence of the decidua basalis. Placenta increta usually presents with vaginal bleeding during difficult placental removal in the third-trimester. Although placenta increta may complicate first and early second-trimester pregnancy loss, the diagnosis can be very difficult during early pregnancy and thus the lesion is difficult to identify. We encountered with a woman who was diagnosed with placenta increta after receiving emergency hysterectomy due to intraperitoneal bleeding 2 months after an uncomplicated dilatation and curettage in the first trimester. Therefore, we report this case with a brief review of the literature

    Clinical Significance of Microsatellite Instability in Sporadic Epithelial Ovarian Tumors

    Get PDF
    PURPOSE: We evaluated the expression of microsatellite instability (MSI) in sporadic ovarian tumors using 5 standard and 9 new MSI markers to determine the clinical significance of MSI in sporadic epithelial ovarian tumors. MATERIALS AND METHODS: MSI was examined in 21 borderline and 25 malignant ovarian tumors. Polymerase chain reaction (PCR) was performed using the 5 markers recommended by the National Cancer Institute (NCI) for colon cancer and 9 additional markers. MSI was determined using fractional analysis by mixing the PCR products and size markers. RESULTS: Using the 5 conventional MSI markers, MSI was found in 4 of 46 (8.6%) ovarian tumors, including 2 of 21 (9.5%) borderline ovarian tumors and 2 of 25 (8%) malignant ovarian tumors. Using the 9 additional MSI markers, MSI was observed in 7 of 46 (15.2%) ovarian tumors, including 3 of 21 (14.3%) borderline ovarian tumors and 4 of 25 (16%) malignant ovarian tumors. There was no statistically significant difference between MSI and clinicopathological factors, including histology and stage, although there was a trend toward an increased incidence of MSI in the serous type. CONCLUSION: MSI was infrequent in ovarian tumors, including both borderline and malignant tumors. MSI was found to be uncommon in sporadic ovarian tumors, even by using additional MSI markers. The clinical significance of MSI is not strong in patients with sporadic ovarian tumors.ope

    CD70–CD27 ligation between neural stem cells and CD4+ T cells induces Fas–FasL-mediated T-cell death

    Get PDF
    1. Introduction : Neural stem cells (NSCs) are among the most promising candidates for cell replacement therapy in neuronal injury and neurodegenerative diseases. One of the remaining obstacles for NSC therapy is to overcome the alloimmune response on NSCs by the host. 2. Methods : To investigate the mechanisms of immune modulatory function derived from the interaction of human NSCs with allogeneic T cells, we examined the immune regulatory effects of human NSCs on allogeneic T cells in vitro. 3. Results : Significantly, NSCs induced apoptosis of allogeneic T cells, in particular CD4+ T cells. Interaction of CD70 on NSCs and CD27 on CD4+ T cells mediated apoptosis of T cells. Thus, blocking CD70–CD27 interaction prevented NSC-mediated death of CD4+ T cells. 4. Conclusions : We present a rational explanation of NSC-induced immune escape in two consecutive stages. First, CD70 constitutively expressed on NSCs engaged CD27 on CD4+ T cells, which induced Fas ligand expression on CD4+ T cells. Second, CD4+ T-cell apoptosis was followed by Fas–Fas ligand interaction in the CD4+ T cells.This work was supported by the Ministry of the Knowledge Economy (grants 2009-67-10033838) and a grant from Hanwha Chemical Corporation (Project No. 0411–20070011).Peer Reviewe

    Cancer-Associated Splicing Variant of Tumor Suppressor AIMP2/p38: Pathological Implication in Tumorigenesis

    Get PDF
    Although ARS-interacting multifunctional protein 2 (AIMP2, also named as MSC p38) was first found as a component for a macromolecular tRNA synthetase complex, it was recently discovered to dissociate from the complex and work as a potent tumor suppressor. Upon DNA damage, AIMP2 promotes apoptosis through the protective interaction with p53. However, it was not demonstrated whether AIMP2 was indeed pathologically linked to human cancer. In this work, we found that a splicing variant of AIMP2 lacking exon 2 (AIMP2-DX2) is highly expressed by alternative splicing in human lung cancer cells and patient's tissues. AIMP2-DX2 compromised pro-apoptotic activity of normal AIMP2 through the competitive binding to p53. The cells with higher level of AIMP2-DX2 showed higher propensity to form anchorage-independent colonies and increased resistance to cell death. Mice constitutively expressing this variant showed increased susceptibility to carcinogen-induced lung tumorigenesis. The expression ratio of AIMP2-DX2 to normal AIMP2 was increased according to lung cancer stage and showed a positive correlation with the survival of patients. Thus, this work identified an oncogenic splicing variant of a tumor suppressor, AIMP2/p38, and suggests its potential for anti-cancer target

    Genomic profile analysis of diffuse-type gastric cancers

    Get PDF
    Background: Stomach cancer is the third deadliest among all cancers worldwide. Although incidence of the intestinal-type gastric cancer has decreased, the incidence of diffuse-type is still increasing and its progression is notoriously aggressive. There is insufficient information on genome variations of diffuse-type gastric cancer because its cells are usually mixed with normal cells, and this low cellularity has made it difficult to analyze the genome. Results: We analyze whole genomes and corresponding exomes of diffuse-type gastric cancer, using matched tumor and normal samples from 14 diffuse-type and five intestinal-type gastric cancer patients. Somatic variations found in the diffuse-type gastric cancer are compared to those of the intestinal-type and to previously reported variants. We determine the average exonic somatic mutation rate of the two types. We find associated candidate driver genes, and identify seven novel somatic mutations in CDH1, which is a well-known gastric cancer-associated gene. Three-dimensional structure analysis of the mutated E-cadherin protein suggests that these new somatic mutations could cause significant functional perturbations of critical calcium-binding sites in the EC1-2 junction. Chromosomal instability analysis shows that the MDM2 gene is amplified. After thorough structural analysis, a novel fusion gene TSC2-RNF216 is identified, which may simultaneously disrupt tumor-suppressive pathways and activate tumorigenesis. Conclusions: We report the genomic profile of diffuse-type gastric cancers including new somatic variations, a novel fusion gene, and amplification and deletion of certain chromosomal regions that contain oncogenes and tumor suppressors.open121

    Variation block-based genomics method for crop plants

    Get PDF
    BACKGROUND: In contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits. RESULTS: We propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color. CONCLUSIONS: We suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding
    • …
    corecore